Discussion Questions to Accompany Reading

Introduction p1-16.

1. On page 2 the authors state: “Models consist of at least two parts: (1) a formula relating the response to all explanatory variables (e.g., effects), and (2) a description of the probability distribution assumed to characterize random variation affecting the observed response.”

In the context of a sample from a population with radon exposure in the “Review”, explain how (2) is applicable.

2. On page 2, the authors state: “The simplest model to describe how observations from this experiment were produced for drug A is \(Y_A = \mu_A + e \). That is, a blood pressure observation \(Y_A \) on a given subject treated with drug A is equal to the mean of drug A plus random variation ..”

Explain what the term “\(e \)” means in this model, and give an example.

3. On page 2, the authors state: “You can define the effect of drug A and \(\alpha_A \) such that \(\mu_A = \mu + \alpha_A \), where \(\mu \) is defined as the intercept.”

In the setting, suppose response for the population of \(N \) subjects could be potentially observed under each of five drugs. Define the intercept and the effect, making an assumption if required..

4. Page 3 (second paragraph). Interpret parameter that will result with 5 treatments if the SAS procedure is used that sets the mean of the last factor level equal to zero.

5. Page 3 (4th paragraph). “In general, \(Y_{ij} \) stands for the observation on the \(j^{th} \) subject treated with drug \(i \).”

Is the \(j^{th} \) subject referring to the \(j^{th} \) selection of a subject, or to the subject that was selected on the \(j^{th} \) selection?. Is the subject random, or fixed?

6. Page 4. Give an example of a linear and a non-linear model. What is the essential difference?
7. On page 4, the authors state: “An effect is called fixed if the levels in the study represent all possible levels of the factor, or at least all levels about which inference is to be made.”

Consider a simple random sample of dwelling units from a finite population. Using the author’s definition, are subject effects fixed effects? In the subsequent description of the blood pressure drug experiment, if there are 6 drugs, but only 5 are used, are drugs fixed effects? Can you improve on the author’s definition of fixed effect?

8. On page 5, the authors state: “The factor effects corresponding to the larger set of levels constitute a population with a probability distribution. The last statement bears repeating because it goes to the heart of a great deal of confusion about the difference between fixed and random effects: a factor is considered random if its levels plausibly represent a larger population with a probability distribution.”