Linear Regression with One Regressor

Michael Ash

Lecture 9
Review of Last Time

1. The Linear Regression Model
 - The relationship between independent X and dependent Y is modeled as a straight line (the regression line) with slope (β_1) and intercept (β_0)
 - Every datapoint i is above or below the line by an idiosyncratic amount u_i

2. Estimating the Model
 - Ordinary Least Squares chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to best fit the data
The Least Squares Assumptions

The point of the assumptions

- The OLS estimators are unbiased and consistent.
- The OLS estimators are normal in large samples with formulas for standard error to be given.
The Conditional Distribution of u_i given X_i Has a Mean of Zero: $E(u_i | X_i) = 0$

- The regression line needs to be right on average (Figure 4.4). The u_i must be scattered above and below the regression line regardless of the value of X_i.
- Failure of this assumption is disastrous. If the regression line is not right, on average, then the estimated slope and intercept will be biased.
- Example: suppose that “other factors” are always bad (or good) in small (or large) classrooms.
- If you knew whether a point would be above the regression line or below the regression line, then you should draw a different regression line.
The Conditional Distribution of u_i given X_i Has a Mean of Zero: $E(u_i|X_i) = 0$

Continued

- $E(u_i|X_i) = 0$ (which is stronger) implies $\text{corr}(X_i, u_i) = 0$ (but not vice versa). So $\text{corr}(X_i, u_i) = 0$ is a necessary but not sufficient condition for $E(u_i|X_i) = 0$.
- The assumption concerns the unknowable value u_i, not the computed value \hat{u}_i.
 - You cannot test the assumption by checking if $\text{corr}(X_i, \hat{u}_i) = 0$.
 - OLS will draw a line that makes $\text{corr}(X_i, \hat{u}_i) = 0$ look true even if it is not true.
#2 \((X_i, Y_i), \ i = 1, \ldots, n\) Are Independently and Identically Distributed

Usually easy in cross-sectional random samples. The age and earnings of worker \(i\), \((X_i, Y_i)\) in the sample are independent of the age and earnings of worker \(j\), \((X_j, Y_j)\).

Points of concern

- Classical experiments: the experimenter chooses every \(X_i\). Illustrates the importance of randomization in experimental design.
- Stratified sampling draws clustered observations, e.g., workers from the same household.
- Time series: observations that are close together in time likely share common components (or one observation may be a reaction to its predecessor).
We cannot have observations with extremely large values of either X_i or u_i.

By **squaring** the gap between each point and the regression line, Ordinary Least **Squares** puts extra weight on outlying data. Note: if the values of $\{u_1, u_2, u_3\} = \{-3, 1, 2\}$, then note that $\{u_1^2, u_2^2, u_3^2\} = \{9, 1, 4\}$, which gives extra weight to the u_1 in shaping the regression line.

Regression analysis may not be appropriate for populations that have enormous outliers in either direction.
Sampling Distribution of OLS Estimators

Analogy to the mean

- Population parameters are true, fixed, and unknowable. Estimates of parameters vary because of random sampling, but they are knowable.
- The population coefficients β_0 and β_1 are estimated from a sample randomly drawn from the population.
- If we had, by chance, a different sample, we would have slightly different estimates of β_0 and β_1.
Sampling distribution of $\hat{\beta}_0$ and $\hat{\beta}_1$

Because OLS estimation is similar to computing a sample mean, in large samples, Law of Large Numbers and Central Limit Theorem results apply.

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1.

\[
E(\hat{\beta}_0) = \beta_0 \\
E(\hat{\beta}_1) = \beta_1
\]

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are normally distributed around the true values β_0 and β_1 with variances $\sigma^2_{\hat{\beta}_0}$ and $\sigma^2_{\hat{\beta}_1}$

\[
\hat{\beta}_1 \sim N(\beta_1, \sigma^2_{\hat{\beta}_1}) \\
\sigma^2_{\hat{\beta}_1} = \frac{1}{n} \frac{\text{var}[(X_i - \mu_X)u_i]}{[\text{var}(X_i)]^2} \\
\hat{\beta}_0 \sim N(\beta_0, \sigma^2_{\hat{\beta}_0}) \\
\sigma^2_{\hat{\beta}_0} = \text{not shown. See Key Concept 4.4}
\]
Summary

- β_0 and β_1 are true, fixed population parameters. They do not have distributions.
- $\hat{\beta}_0$ and $\hat{\beta}_1$ are estimators with sampling distributions. The sampling distribution arises because the estimates are computed from sample data.
- $\sigma^2_{\hat{\beta}_0}$ and $\sigma^2_{\hat{\beta}_1}$ describe the spread in the distribution of $\hat{\beta}_0$ and $\hat{\beta}_1$.
- $\sigma^2_{\hat{\beta}_0}$ and $\sigma^2_{\hat{\beta}_1}$ are analogous to the variance of the sample mean (the square of the standard deviation of the sample mean). Bigger values of $\sigma^2_{\hat{\beta}_0}$ and $\sigma^2_{\hat{\beta}_1}$ imply less precision in the estimates of $\hat{\beta}_0$ and $\hat{\beta}_1$.
- We will use $\sigma^2_{\hat{\beta}_0}$ and $\sigma^2_{\hat{\beta}_1}$ to test hypotheses about and make confidence intervals for β_0 and β_1.